
How to build a module for

adding your own

JavaScript libraries to

Drupal 7

Written by Jesús Heredia Reboira

www.jesusheredia.info

Notice of rights

All rights reserved. No part of this document may be
reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of
the author.

1

The Goal

One of your clients needs to use a certain JavaScript library in

Drupal 7, but, unfortunately, there is no module providing support

for that library. Say he needs to use the fancyBox 2 library, which

offers a nice and elegant way to add zooming functionality for

images, HTML content and multimedia on your web pages.

Getting Started

Let’s get started by creating the file used by every module to provide

Drupal with basic information about itself (the .info file).

2

http://www.google.com/url?q=http%3A%2F%2Ffancyapps.com%2Ffancybox%2F&sa=D&sntz=1&usg=AFQjCNGLJIHyxh7agq5k1EFSySqe_IXvfQ

1. Create a folder to store your module. Although you could put

your module in sites/all/modules, there is a best place to put custom

modules in: sites/default/modules. This follows Drupal best practices

and allows you to find your own modules easily.

If your server is running more than one Drupal site (multi-site
configuration), then the sites/default folder is only used by the default
site. If this is your case, you’d better move your custom module into
sites/all/modules/custom.

First, go to sites/default and create the modules folder (which does

not exist by default). Then, create another folder inside sites/default

to be named fb2. This is the folder you’ll be using for your custom

module.

The folder must be named with the machine-readable name of the
module and the same applies to the .info and .module files (fb2.info
and fb2.module).

Make sure that your web server is allowed to read the .info and
.module files. In addition, it should not be allowed to write either files.

2. Write the .info file. As said above, the .info file is intended to

provide Drupal with basic information about the module. Open your

favourite IDE or text editor and create a file to be named fb2.info.

3

The first directive that you’re going to add to the .info file is the name

directive. A directive is composed of a name, an equal sign, and a

value, like this:

name = fancyBox 2

By convention, there should be one space on each side of the equal
sign. In addition, if a value spans more than one line, it must be
enclosed in quotation marks. If there is a semicolon at the beginning
of a line, Drupal will treat that line as a comment, meaning that it’ll be
ignore by the Drupal INI parser.

Let’s have a look at the complete .info file:

;Id

name = fancyBox 2

description = Registers the fancyBox 2 library.

package = My custom modules

core = 7.x

files[] = fb2.module

While the name, description, package, and core directives are

self-explanatory, both the first and last line of the previous piece of

code may be a little tricky for you.

Every .info file should begin with ;Id, which is a placeholder used

by the version control system to store information about the file. If

you’re using Git, then you can omit it.

In addition, some directives use an array-like syntax because

multiple values can be assigned to them. That’s why the square

brackets are used by the files directive.

3. The .module file. Save all the changes to the .info file and then

create and save a new file to be named fb2.module.

4

If you go to your Drupal site now, you’ll see that the module is
available for use. As you can guess, it’s just a dummy module at the
moment because you have to put its functionality into the .module file
you just created.

Before you start coding the .module file, download the fancyBox 2
library from fancyapps.com/fancybox; put it in
sites/default/modules/fb2; and rename its folder to fancybox2. At the
time of this writing, version 2.1.5 is available for download.

The .module file

Now that the .info file and the fancyBox 2 library are ready, you can

start getting your hands dirty with code.

1. Type the <?php processor instruction, marker for CVS, and

Doxygen-style (/** */) block for commenting what the module is

intended for.

5

<?php

// Id

/**

 * @file

 * Registers the fancyBox 2 library in Drupal 7.

 *

 * This module is a case study on how to put the

 * functionality provided by a certain library in

 * Drupal 7.

 */

In order to parse a file, PHP looks for its opening and closing tags,

which are <?php and ?>. That’s why every PHP file should start with

<?php and end with ?>. However, when it comes to .module files, you

must omit the PHP closing tag ?> to prevent the inclusion of white

space from breaking HTTP headers.

As to comments, you should use Doxygen-style comments for

functions, classes, interfaces, constants, files, and globals. All other

comments should use the double-slash comment. As you can see in

the previous image, this is the one used to comment the marker for

CVS.

6

Thank you for downloading the evaluation version. Please
go to www.jesusheredia.info/premium for full details on how
to buy the whole version of this article.

7

http://www.google.com/url?q=http%3A%2F%2Fwww.jesusheredia.info%2Fpremium&sa=D&sntz=1&usg=AFQjCNGGGYx9xevkv6D4PkKpJueRhJh4Hg

